点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:一分快3 - 一分快3
首页>文化频道>要闻>正文

一分快3 - 一分快3

来源:一分快32023-10-26 17:48

  

一分快3

为弥合数字鸿沟共同发力******

  【乌镇观察】

为弥合数字鸿沟共同发力

——来自2022年世界互联网大会乌镇峰会弥合数字鸿沟论坛的声音

光明网记者 邱晓琴 王一涵

  数字时代,全球数字化转型进程持续深化,但也伴生出数字鸿沟。如何让数字发展红利惠及全球,已逐渐成为国际社会需要解答的时代命题。11月9日,由教育部、人力资源和社会保障部、中国科学技术协会、联合国儿童基金会主办,中国网络社会组织联合会、教育部教育技术与资源发展中心(中央电化教育馆)、中国科普研究所协办的2022年世界互联网大会乌镇峰会弥合数字鸿沟论坛以线上线下结合方式举行,与会人员围绕数字鸿沟相关话题展开深入探讨,并就弥合数字鸿沟分享了经验,发起了倡议。

  共享数字发展红利,携手应对数字鸿沟

  “近年来,数字触角正快速延伸至每一个角落,成为经济社会发展和增进民生福祉的强劲新动能。数字鸿沟是数字化进程中产生的发展问题,体现在国与国、人与人之间的不同层面。”在中国科学技术协会专职副主席、书记处书记孟庆海看来,数字鸿沟意味着经济鸿沟、资源鸿沟,加速全球发展不协调、个体机会不均等,“要站在实现全球可持续发展高度,努力弥合数字鸿沟”。

  疫情防控期间,众多儿童享受互联网带来的便利,比如在家上起了网课。但据联合国儿童基金会驻华代理代表郑道介绍:“尽管全球数百万儿童的上网时间越来越多,但仍有13亿多儿童无法在家上网。”他表示,各国政府都需要出台相关的法律政策和举措,重点关注弱势群体,确保所有儿童都能够安全上网。

  在中欧数字协会主席鲁乙己看来,虽然老年人口触网的数量在增加,但与其他年龄段相比仍占少数。“许多老年人依旧无法使用互联网服务满足基本需求,无法融入社会生活的多个方面,让原本已经孤立和孤独的老年群体雪上加霜。因此,要注重提高老年人的数字技能。”鲁乙己说。

  “未来,可能因为仅仅不懂使用电脑、智能手机和互联网,一些独居老人无法与外界甚至家人联系,学生无法独立完成家庭作业,弥合数字鸿沟是人类共同生存发展的必然选择。”世界知识产权组织中国办事处主任刘华说。

  创新数字技术赋能,提升全民数字素养

  “弥合数字鸿沟是全球共同的紧迫任务,数字化发达国家和地区应担起更多责任。”世界工程组织联合会前主席龚克呼吁,国际社会和组织要切实帮助欠发达国家发展网络基础设施,加快实施面向不发达国家和地区的基础设施援建计划。

  从2017年开始,中国倡议建设21世纪的数字丝绸之路,大力建设互联网基础设施,加强网络空间合作,建立“一带一路”沿线国家共同技术标准。联合国教科文组织驻华代表处代表夏泽翰对此非常赞赏。他指出,疫情暴发以来,中国“数字丝绸之路”的重要性愈发凸显,中国通过“数字丝绸之路”与“一带一路”倡议的其他成员国分享数字化专业知识,为全球数字化进程注入强劲动能。

  宏观的视角之外,更多人将目光放到网络环境的改善上。为了给老年人创造友好的使用体验,越来越多网络应用开始适老化改造。美团总编辑徐辉介绍,在推动信息无障碍,共享普惠的生活方面,美团推出的长辈版服务已覆盖500万老年群体。抖音集团副总裁李涛则指出,要关注多元群体安全问题,丰富平台安全的知识内容,为青少年和老年人等人群构建安全可信任的数字生活环境。

  当然,弥合数字鸿沟,还离不开个人自身的数字素养和技能。“要不断推进教育数字化发展,提升全民数字素养与技能。”中国教育部科学技术与信息化司副司长舒华认为,应健全完善与数字人才培养相适应的课程教材体系,推动把数字素养与技能纳入学生综合素质评价,注重提高学生利用数字技术解决实际问题的能力。人力资源和社会保障部信息中心主任宋京燕也表示,要立足工业化与信息化深度融合,建设适应数字化时代的技能人才队伍,确保人才技能水平始终跟上时代发展和技术更迭。

  倡议加快数字基础设施建设,深化数字素养和技能国际交流合作,推进全民终身数字学习体系……为构建数字包容社会,提升全球公民数字化适应力、胜任力、创造力,共建共享数字化发展成果,论坛同时发布了《提升全民数字素养和技能倡议》,各方携手呼吁为弥合数字鸿沟共同发力。

  《光明日报》( 2022年11月10日 12版)

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 倪妮嘟嘴卖萌霸气举枪 和张震亲密互动

  • 此生无悔入漫威,辉煌过后终落幕 !

独家策划

推荐阅读
一分快31713家公司营收净利双增长 2018年A股十大成长王现身
2024-02-29
一分快3量子保密通讯,经典派陷入的N个误区
2023-09-26
一分快3首度披露 重庆公安局原局长何挺下属已被双开(图)
2023-07-09
一分快3《自然》:揭示褪黑素受体结构,让睡个好觉不再是梦
2023-10-01
一分快3北京二手房成交回落 “小阳春”4月难再续
2024-04-06
一分快3全面学习资料与你分享
2024-03-30
一分快3 江西又有县级公安局局长落马,40天已有5人被查
2023-09-27
一分快3育儿热搜:2岁前不应看电子屏幕
2024-03-02
一分快3别再问该不该炒股还是该买房了!紧跟...
2024-03-06
一分快3为啥刚起床就会觉得累?
2024-03-20
一分快3男子洗澡不关窗被女邻居骂不要脸 回怼:信不信砍你
2023-10-23
一分快3如何炒股才赚钱?给股市小白的三条忠告
2024-04-14
一分快3荷兰教授用“睡美人”比喻论文被退稿:歧视女性
2023-07-07
一分快3MH370最终搜寻报告:花1.6亿美元 仅找到3块残片
2024-01-19
一分快3《全职高手之巅峰荣耀》首曝海报 电竞少年出征
2023-08-14
一分快3[萌宝大赛]梓梓:一起来玩泡泡呀
2024-05-03
一分快3居民购房杠杆率连降5个季度 房价涨幅将收窄
2023-08-20
一分快3苏新平同名艺术展:用艺术重构心灵风景和精神家园
2024-03-11
一分快3高考家长:你的酸甜苦辣我都懂
2024-05-07
一分快3网易公布2018年第二季度财报
2024-04-01
一分快3朴有天承认大部分吸毒事实
2023-09-21
一分快3冒险《ATLAS》取消帝国模式
2024-05-29
一分快3为孩子辞职在家 丈夫却另结新欢
2024-03-29
一分快3一季度投资消费出口抢眼 外贸确保进出口稳中提质
2023-07-13
加载更多
一分快3地图